
www.manaraa.com

SYSTEMS ENGINEERING FOR HIGH PERFORMANCECOMPUTING SOFTWARE: THE HDDA/DAGHINFRASTRUCTURE FOR IMPLEMENTATION OFPARALLEL STRUCTURED ADAPTIVE MESHREFINEMENTMANISH PARASHAR AND JAMES C. BROWNE�Abstract. This paper de�nes, describes and illustrates a systems engineering pro-cess for development of software systems implementing high performance computingapplications. The example which drives the creation of this process is development of aexible and extendible program development infrastructure for parallel structured adap-tive meshes, the HDDA/DAGH package. The fundamental systems engineering prin-ciples used (hierarchical abstractions based on separation of concerns) are well-knownbut are not commonly applied in the context of high performance computing software.Application of these principles will be seen to enable implementation of an infrastructurewhich combines breadth of applicability and portability with high performance.Key words. Software systems engineering, Structured adaptive mesh-re�nement,High performance software development, Distributed dynamic data-structures.1. Overview. This paper describes the systems engineering processwhich was followed in the development of the Hierarchical Dynamic Dis-tributed Array/Distributed Adaptive Grid Hierarchy (HDDA/DAGH) pro-gram development infrastructure (PDI) for implementation of solutions ofpartial di�erential equations using adaptive mesh re�nement algorithms.The term \systems engineering" was carefully chosen to distinguish thedevelopment process we propose as appropriate for development of highperformance computing software from the conventional \software engineer-ing" development process. The term \systems engineering" is not widelyused in the vernacular of high performance computing. Indeed, formalstructured development processes are not commonly used in developmentof high performance computing (HPC) software. This may be becauseconventional software engineering processes do not address many of theissues important for HPC software systems. This paper uses developmentof the HDDA/DAGH PDI as a case study to present a structured devel-opment process which addresses the issues encountered in development ofhigh performance computing software systems. While HDDA/DAGH is aPDI for applications rather than an application, the issues addressed bythe systems engineering process we describe are common to all types ofhigh performance computing software systems. We propose this systemsengineering process as one which is generally appropriate for high per-formance computing applications. Conventional software engineering [1,2]focuses on the management aspects of the development process for very� Department of Computer Science & TICAM, University of Texas at Austin, Austin,Texas 78712 fbrowne,parasharg@cs.utexas.edu1

www.manaraa.com

2 MANISH PARASHAR AND JAMES C. BROWNElarge systems which have many components, multiple developers involvedin system development, and structures and processes which enable e�ectivemanagement of the development process. These large systems are often fo-cused on information management for commercial or defense applications.(Large embedded controllers for medical instruments, power systems, etc.are also targets for a somewhat di�erent family of software engineeringmethods.) The usual requirements for these information management sys-tems include: high availability, good response for interactive transactionsand maintainability over long lifetimes. To achieve these goals over verylarge systems the work of many developers must be coordinated to yielda coherent system structure. These systems are typically implemented forcommodity hardware based execution environments using commodity soft-ware systems as the implementation infrastructure. There is a substantialbody of \conventional wisdom" concerning how to realize e�cient instan-tiations of these systems. (Although the rise of distributed or client/serverimplementations has introduced a new set of performance concerns.) Theprimary source of complexity is primarily sheer system size. Conventionalsoftware engineering methods and processes are structured by this set ofrequirements and issues.High performance systems are typically quite di�erent from these in-formation management systems. They are often of modest size by com-mercial standards but typically have a high degree of internal complexity.HPC applications are usually developed by small teams or even individ-uals. There is no commodity implementation infrastructure to be used.The execution environments are state-of-the-art, rapidly changing, andfrequently parallel computer systems. The underlying hardware is a of-ten novel architecture for which there is little \conventional wisdom" con-cerning development of e�cient programs. These execution environmentschange much more rapidly than is the case for large commercially-orientedsystems. The end-user requirements for HPC software systems typicallyevolve even more rapidly because they are used in research environmentsrather than in production environments. Time for end-to-end execution(absolute performance) is usually the most critical property with adapt-ability to a multiplicity of applications and portability across the rapidlyevolving platforms being other important issues. Reuse of previously writ-ten code is also often desired. The complexity of HPC systems primarilyarises from the data management requirements of the applications. Weconclude that traditional methods of software engineering are not appro-priate for development of high performance computing software. However,high performance computing software development can bene�t from theapplication of a well-structured development process.The systems engineering process we propose targets issues and require-ments underlying the development of high performance computing soft-ware systems. In what follows we describe the systems engineering processwhich we followed in the development of the HDDA/DAGH system and

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 3demonstrate that the result is a system which is performant, adaptableand portable. Application of well-structured development processes to highperformance computing software will be bene�cial to the �eld in general. IfHPC is to become an e�ective discipline we must document good practiceso that best practice can be identi�ed. This is particularly true for devel-opers of infrastructure systems which are intended to be used by a broadcommunity of users. This paper uses the development of HDDA/DAGHas a vehicle to put forward what we think is one example of good de-sign/development process for HPC software systems.2. Systems Engineering of High Performance Software Sys-tems. The systems engineering process for high performance computingsoftware development described here has four elements:1. A process for the translation of application requirements into sys-tem design requirements. This step is often complex, iterative andis actually never �nished since the applications requirements forresearch-oriented systems typically evolve rapidly and continually.2. A design model founded on the principles of hierarchical abstrac-tion and separation of concerns. Use of hierarchical abstractionsin software system development was formalized by Dijkstra in1968 [3]. But development of e�ective abstraction hierarchies isnot simple. We propose that de�nition and realization of e�ectiveabstraction hierarchies should be based on the principle of sep-aration of concerns [4,5]. Construction of abstraction hierarchiesbased on separation of concerns is discussed in detail in Section 2.2.Satisfaction of the requirements for absolute performance, adapt-ability and portability are grounded in the structure of the designmodel, and in de�ning abstractions which enable selection of e�-cient algorithms.3. Selection of implementation algorithms which meet the goals ofsystem performance in the context of the design model.4. An implementation model which preserves the structure and prop-erties of the design model in the implementation.Each of these steps will be described in more detail below and illus-trated application to the development of HDDA/DAGH in Section 3.2.1. Translation of Application Requirements to System De-sign Requirements. This is an iterative process which is rendered morecomplex by the cultural, vocabulary and experiential di�erences betweencomputational scientists/computer scientists who are the typical systemdevelopers, and physicists and engineers who are the typical application de-velopers for HPC software systems. It is often the case that the application-level developers have not done (and indeed cannot do) a systematic a priorianalysis of requirements. The applications which are being supported ofteninvolve new problems for which solution methods are not known, and newalgorithms which are being used by application scientists for the �rst time.

www.manaraa.com

4 MANISH PARASHAR AND JAMES C. BROWNEIt is therefore impossible for them to de�ne the requirements precisely,and unreasonable for the computational or computer scientist to expect astatic and complete requirements speci�cation before beginning develop-ment. Consequently the requirements speci�cation for an HPC softwaresystem is an evolving document. What must be agreed upon is the pro-cess by which the end-users and the software system developers activelycollaborate. Usually an initial requirements statement is negotiated andan initial design and implementation of the PDI is created. Applicationdevelopers then try this initial implementation and come back with an ad-ditional set of requirements based on their experience using the softwaresystem to attempt problem solution (and to experiment with new ideasrecently discovered).There are, however, some generic requirements for the implementationof infrastructures such as the HDDA/DAGH PDI. The application pro-gramming interface of the PDI should be as close as possible to the directrepresentation of operations in the algorithms of the solution method. Thedesired application programming interface usually includes the ability toreuse existing Fortran or C modules, to make both dynamic data struc-turing and distribution of data across multiple address spaces transparentand, at the same time, to lose nothing in the way of e�ciency comparedto a low-level, detailed application-speci�c implementation. Secondary re-quirements include portability of the resulting system across a wide varietyof experimental platforms and scalability from small problems to very largeproblems.2.2. The Design Model. The design model which we have adoptedis the usual one of deriving requirements from the top down but designingthe system from the bottom up as a set of hierarchically structured layersof abstractions. Critical factors underlying the development of e�ectivehierarchical abstractions are:1. Separation of Concerns - Create a clean separation of semanticcontent between levels.2. Keep the semantic distance between levels as small as is consistentwith not introducing too much overhead.3. Direct Mapping - De�ne layers which implement the requirementsof the higher levels as directly as is consistent with e�ciency. Avoidcomplex protocols across levels.Figure 2.1 is a schematic of the design model for the HDDA/DAGHPDI. Each layer can be thought of as a set of abstract data types whichimplements operations against instances of the structures they de�ne.The lowest level of the abstraction hierarchy of the HDDA/DAGHPDI de�nes a hierarchical dynamic distributed array or HDDA which is ageneralization of the familiar static array of programming languages. TheHDDA is purely an array data type and only has the operations of cre-ation, deletion, array expansion and contraction, and array element access

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 5
InterpolationMultigrid Error Estimation Clustering

Adaptive Mesh Refinement Application

Interactive VizI/O

-> Hierarchical Index Space (Space-filling curves)

-> Hierarchical Distributed Dynamic Array (Extendible hashing)

-> Dynamic Data-Objects (Adaptive grids, trees, meshes, ...)

Distributed Dynamic Data-Structures

High-level Programming Abstractions

Checkpoint/RestartShadow Hierarchy

-> Grid Geometry Abstraction (Coord, BBox, BBoxList, ...)

-> Grid Hierarchy Abstraction (DAGH structure specification)

->Grid Function Abstraction (Distributed application fields)

Fig. 2.1. Design model for the HDDA/DAGH Program Development Infrastructureand storage de�ned on it. Further, since the use of computational kernelswritten in C and Fortran is a requirement, partitioning, communication,expansion and contraction must be made transparent to these computa-tional kernels. Separation of concerns is illustrated by the fact that wede�ne a separate level in the hierarchy (above the HDDA) hierarchy toimplement grids and/or meshes. We shall see that de�ning the HDDA asa separate abstraction layer gives material bene�t by making de�nition ofmultiple types of grids and meshes simple and straightforward.The next abstraction level implements grids by instantiating arrays asa component of a larger semantic concept, that of a grid. A grid addsde�nition of a coordinate system and computational operators de�ned inthat coordinate system. The de�nition of a grid includes the operations ofcreation, deletion, expansion and contraction which are directly translatedto operations on instances of the HDDA, and also de�nes computational(stencil) operators, partitioning operators, geometric region operators, re-�nement and coarsening operators, etc. Creation of a hierarchical grid isdirectly mapped to creation of a set of arrays. Since arrays are implementedseparately from grids, it is straightforward to separately implement manydi�erent variants of grids using the same array abstractions which are pro-vided. Thus separation of concerns spreads vertically across higher levelsof the abstraction hierarchy leading to simpler, faster and more e�cientimplementations.

www.manaraa.com

6 MANISH PARASHAR AND JAMES C. BROWNEIf the HDDA maintains locality and minimizes overheads then theDAGH level can be focused on implementing a wide span of grid variants.Since each grid variant can be de�ned independently of the other grid typeswithout redundancy, and must implement only the computational opera-tions unique to its speci�c grid type, each grid variant can have a simpleand e�cient implementation.Hierarchical abstractions are a recursive concept. The HDDA is itselfa hierarchy of levels of abstractions.2.3. Algorithms for Implementationof the DesignModel. Eachlevel of the design model will be implemented as a set of abstract data types.Therefore algorithms for implementing the operations of each abstract typeon its instances must be selected. Separation of concerns enables selectionand/or de�nition of the simplest algorithms which can accomplish a givenrequirement. Separation of concerns in the design model thus leads toperformant, scalable, adaptable and portable code.The critical requirement for the HDDA/DAGH package is to maxi-mize performance at the application level. Performance at the applicationlevel requires locality of data at the data management level. Locality notonly minimizes communication cost on parallel systems but also maximizescache performance within processors. Since the application levels operators(operations on the grids) are de�ned in an n-dimensional application space,it is critical that the locality of the data in the one-dimensional distributedphysical storage space maintains the locality de�ned by the geometry of theproblem in the n-dimensional coordinate space in which the solution is de-�ned. Therefore we must choose or de�ne storage management algorithmswhich lead to preservation of the multi-dimensional geometric locality ofthe solution in the physical layout of data in storage. A second factor inobtaining high performance is minimization of overhead such copying ofdata, communication, etc. Therefore our algorithm choices for the HDDAmust focus on minimizing these overheads.2.4. Structure for the ImplementationModel. The implementa-tion model must preserve the structure and properties of the design modelclearly in the implementation. The implementation model which we choseis a C++ class hierarchy where a judicious integration of composition andinheritance is used to lead to a structure which captures and accuratelyreects the hierarchical abstractions in the design model. This structurewill be seen in the next section to closely follow the design model.3. Case Study - Design and Implementationof the HDDA/DAGHInfrastructure. The foundations for HDDA/DAGH originated in the de-velopment of a similar infrastructure for support of hp-adaptive �nite ele-ment computational methods which was begun in 1991 [6]. Thus develop-ment of application requirements extends over some seven years. The map-ping to design requirements also owes intellectual debts to other projects

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 7and contributors as noted in the acknowledgments.3.1. Translation of Application Requirements to System De-sign Requirements. The HDDA/DAGH infrastructure was initially de-veloped to support the computational requirements of the Binary BlackHole (BBH) NSF Grand Challenge project beginning in 1993. The BBHproject had already settled on using the Berger-Oliger AMR algorithm [7]as its means of coping with the rapid changes in the solution of Einstein'sequations in the vicinity of a black hole. Support for several variants ofmultigrid solution methods was also a requirement. HDDA/DAGH haslater been adapted and extended to support several other applications. Asummary of these extensions and adaptations will be given in Section 4.The breadth of these extensions and the ease with which they were madeis a vindication of the time and care spent in the conceptualization andearly design phases of development of the HDDA/DAGH package. Theinitial requirements were developed by a sequence of meetings between thephysicists at the University of Texas at Austin formulating the solution ofEinstein's equations for the evolution of a BBH and the authors of thispaper. These meetings were held more or less regularly for about a year,and were later expanded to include representatives of the other researchgroups in the BBH consortium. The requirements speci�cation process ac-tually took place over a period of about three years and spanned severalreleases of the software. A number of major new requirements developedas the user community worked with the software. For example the needfor shadow hierarchies to enable error analysis was not discovered until thephysicists began coding with the early version of HDDA/DAGH. In fact, itwas not until about February, 1997 that de�nition of the core capabilitiesof HDDA/DAGH was truly �nalized. (And we are sure that this de�nitionwill not be valid for any extended period of time.) Translation of sup-port for Berger-Oliger AMR and multigrid into de�nition of hierarchicallayers of abstract data types with highly e�cient execution and conve-nience features such as built-in visualization and checkpointing and restartde�ne the highest level of application requirements. The speci�c applica-tion requirements for a parallel implementation of Berger-Oliger adaptivemesh re�nement based solutions of partial di�erential equations is supportfor dynamic hierarchical grids and in particular dynamic hierarchical gridswhich may be distributed across multiple address spaces. The grid mustbe adapted based on the estimated error in the solution. Both coarseningand re�nement is required. The implementation of dynamic data manage-ment must be su�ciently e�cient so that the bene�ts of adaptivity arenot out-weighted by the overheads of dynamic storage management. E�-cient implementation of dynamic and distributed data management impliesthat the locality properties of the application geometry be preserved in thestorage layout across distributed and expansion and contraction. Many dif-ferent grid types and computational operators must be supported. Reuse

www.manaraa.com

8 MANISH PARASHAR AND JAMES C. BROWNEof existing Fortran and C coded computational routines was desired.3.2. Instantiation of the Design Model for HDDA/DAGH.Figure 3.1 is a schematic of the layers of the HDDA/DAGH abstractionhierarchy in the context of an application. The hierarchy descends fromleft to right (compare with Figure 2.1) and thus the functionality becomesmore generic from left to right. Each level of the hierarchy is given in moredetail from top to bottom. An application consists of application spe-ci�c components (stencil operators, solvers, interpolation operators, etc.).These application speci�c components are mapped to operations on anappropriate subtype on its right in the programming abstractions layer.The grid subtypes are mapped to the types implemented by the dynamicdata management layers to their right. De�nitions both across and withinlayers have been strongly inuenced by the principle of separation of con-cerns.The ovals with lighter shading are speci�c instances of the higher levelwith darker shading. The Grid Structure abstractions de�nes hierarchicalgrid and implement standard operations on these grids. These abstrac-tions represent the structure geometry of the computational domain andadd grid semantics to the instances of the HDDA in which the computa-tional data is stored. It is straightforward to de�ne multiple types andinstances of Grid Hierarchies such as a SAMR hierarchy or a multigrid hi-erarchy. The Grid Function abstractions de�ne applications �elds on theGrid Structure. These abstraction de�ne the data storage associated witha grid structure and can be de�ned on the cells, vertices or faces of eachgrid in the hierarchy. This separation of Grid Function from Grid Hierar-chy enables the structure of the computational domain to be de�ned andmanipulated independent of the computational data. This makes it simplefor users to employ computational operators for a wide spectrum of com-putational methods. The Grid Geometry abstractions represent regionsin grid space are independent of grid type. These abstractions providea uniforms means for interacting with grids and addressing and directingcomputations to regions on grid. Separation of geometric speci�cationsfrom computational operations allows a single implementation of geometryoperators to be applied to all grids.The requirements for the HDDA are derived from the requirements forthe dynamic hierarchical grids:1. There must be a connected hierarchy of arrays to represent a gridhierarchy.2. The hierarchy of arrays must be dynamic.3. The arrays must be partitioned across separate address spaces.4. The partitioning must result in a balanced computational loadacross processors.5. Pure static single address space array semantics must be main-tained on a local basis since Fortran and C coded computationalroutines must continue to execute correctly. Consequently access

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 9to array element values must be transparent to their distributionacross address spaces and their dynamics.6. Computational operations must be e�cient even when the grid isdynamic and partitioned across many processors.Separation of concerns applies vertically within the de�nition of theHDDA 3.2. The �rst three requirements suggest separation of logical struc-ture from physical structure. Partitioning, expansion and contraction andaccess are de�ned on the logical structure of the HDDA (the index space)and mapped to the physical structure implementing storage. The HDDAis therefore composed of three abstractions: index spaces, storage and ac-cess. Index spaces de�ne the logical structure of the hierarchical arraywhile storage de�nes the layout in physical memory. Access virtualizes theconcept of accessing the value stored at a given index space location acrosshierarchy and partitioning.De�nitions:.Index Space An index space is a lattice of points in an n-dimensionaldiscrete space. We need a recursively de�ned hierarchical indexspace where each position in an index space may be an index space.Storage A mapping from the n-dimensional index space to a one dimen-sional physical storage.Access A set of operations for returning the values associated with posi-tions in the index space from the associated storage.The connection between the application and the array is de�ned bya mapping from points in the n-dimensional continuous physical coordi-nate space in which the solution is de�ned, to points in the n-dimensionaldiscrete index space. Expansion, contraction and partitioning are imple-mented as operations on the index space. Storage maps the index spaceto storage space. Note that separation of the index space from storage al-lows for multiple mappings from index space to physical space where eachmapping de�nes a di�erent semantics for the same data. For example, ap-plication of the computational operators is de�ned by one mapping whilethe data which must be communicated among partitions is de�ned by an-other mapping. The objects of visualization are de�ned by yet a thirdmapping. This instance of separation of concerns has enabled visualizationto be driven by the same data as is used for the computation. Access,the third abstraction, implements the operations required for transparencyof access across physically distributed address spaces. It must be disjointfrom storage and index spaces because the implementation must vary withexecution environment. This is the second application of separation ofconcerns in the design of the HDDA.3.3. Algorithms for the Abstractions of the Design Model.The requirement at this point is to identify algorithms:1. for mapping the n-dimensional continuous space of the solutionto an n-dimensional hierarchical index space with preservation of

www.manaraa.com

10 MANISH PARASHAR AND JAMES C. BROWNEapplication locality,2. for mapping the hierarchical n-dimensional index space to a one-dimensional physical storage space with preservation of the localityin the index space to locality in the storage space,3. for segmenting the storage space into e�ciently manageable blockswhich can be accessed, expanded and contracted e�ciently withpreservation of locality,4. for partitioning of the grid hierarchy among processors and com-munication of the overlapping regions of the grid among processors,and5. for re�nement and coarsening of the grid.3.3.1. Hierarchical, Extendible Index Space. The hierarchical,extendible index space component of the HDDA is derived directly fromthe application domain using space-�lling mappings [8] which are com-putationally e�cient, recursive mappings from N-dimensional space to 1-dimensional space. Figure 3.3 illustrates a 2-dimensional Peano-Hilbertcurve. The solution space is �rst partitioned into segments. The space �ll-ing curve then passes through the midpoints of these segments. Space �ll-ing mapping encode application domain locality and maintain this localitythough expansion and contraction. The self-similar or recursive nature ofthese mappings can be exploited to represent a hierarchical structure andto maintain locality across di�erent levels of the hierarchy. Space-�llingmappings allow information about the original multi-dimensional space tobe encoded into each space-�lling index. Given an index, it is possible toobtain its position in the original multi-dimensional space, the shape of theregion in the multi-dimensional space associated with the index, and thespace-�lling indices that are adjacent to it. The index-space is used as thebasis for application domain partitioning, as a global name-space for nameresolution, and for communication scheduling.3.3.2. Mapping to Address Space. The mapping from the multi-dimensional index space to the one-dimensional physical address space isaccomplished by mapping the positions in the index space to the order inwhich they occur in a traversal of the space �lling curve. This mappingcan be accomplished with simple bit-interleaving operations to construct aunique ordered key. This mapping produces a unique key set which de�nesa global address space. Coalescing segments of the linear key space into asingle key, blocks of arbitrary granularity can be created.3.3.3. Storage and Access. Data storage is implemented using ex-tendible hashing techniques [9] to provide a dynamically extendible, glob-ally indexed storage (see Figure 3.4). The keys for the Extendible HashTable are contractions of the unique keys de�ned as described preceding.Entries into the HDDA correspond to DAGH blocks. Expansion and con-traction are local operations involving at most two buckets. Locality of data

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 11is preserved without copying. The HDDA data storage provides a meansfor e�cient communication between DAGH blocks. To communicate datato another DAGH blocks, the data is copied to appropriate locations in theHDDA. This information is then asynchronously shipped to the appropri-ate processor. Similarly, data needed from remote DAGH blocks is receivedon-the-y and inserted into the appropriate location in the HDDA. Storageassociated with the HDDA is maintained in ready-to-ship buckets. Thisalleviates overheads associated with packing and unpacking. An incomingbucket is directly inserted into its location in the HDDA. Similarly, whendata associated with a DAGH block entry is ready to ship, the associatedbucket is shipped as is. The overall HDDA/DAGH distributed dynamicstorage scheme is shown in Figure 3.5.3.3.4. Partitioning and Communication. An instance of a DAGHis mapped to an instance of the HDDA. The granularity of the storageblocks is system dependent and attempts to balance the computation-communication ratio for each block. Each block in the list is assigned a costcorresponding to its computational load. In case of an AMR scheme, com-putational load is determined by the number of grid elements contained inthe block and the level of the block in the AMR grid hierarchy. The formerde�nes the cost of an update operation on the block while the latter de�nesthe frequency of updates relative to the base grid of the hierarchy. Notethat in the representation described above, space-�lling mappings are ap-plied to grid blocks instead of individual grid elements. The shape of a gridblock and its location within the original grid is uniquely encoded into itsspace-�lling index, thereby allowing the block to be completely describedby a single index.Partitioning a DAGH across processing elements using this represen-tation consists of appropriately partitioning the DAGH key list so as tobalance the total cost at each processor. Since space-�lling curve map-pings preserve spatial locality, the resulting distribution is comparable totraditional block distributions in terms of communication overheads.3.3.5. Re�nement and Coarsening of the Grid. The DAGH rep-resentation starts with a single HDDA corresponding to the base grid of thegrid hierarchy, and appropriately incorporates newly created grids withinthis list as the base grid gets re�ned. The resulting structure is a compos-ite key space of the entire adaptive grid hierarchy. Incorporation of re�nedcomponent grids into the base grid key space is achieved by exploiting therecursive nature of space-�lling mappings. For each re�ned region, the keylist corresponding to the re�ned region is replaced by the child grid's keylist. The costs associated with blocks of the new list are updated to reectcombined computational loads of the parent and child. The DAGH repre-sentation therefore is a composite ordered list of DAGH blocks where eachDAGH block represents a block of the entire grid hierarchy and may containmore than one grid level; i.e. inter-level locality is maintained within each

www.manaraa.com

12 MANISH PARASHAR AND JAMES C. BROWNEDAGH block. Each DAGH block in this representation is fully describedby the combination of the space-�lling index corresponding to the coarsestlevel it contains, a re�nement factor, and the number of levels contained3.4. Implementation Model for HDDA/DAGH. The success ofa system design model is ultimately determined by the ability to preservethis design through implementation. Quite often, important design fea-tures like modularity and extensibility are lost in naive monolithic imple-mentations. The design approach based on the principles of separationof concerns and hierarchical abstractions enables a direct coupling of thedesign with object-oriented software development technology to preserveall features of the design in the implementation. Hierarchical abstractionde�nes the structure of the object-oriented class hierarchy, while the sep-aration of concerns across the abstractions leads to clean interfaces in theclass structure. The actual implementation uses C++ and builds the classhierarchy from bottom up using inheritance and composition to specializemore general base classes.A subset of the HDDA/DAGH abstraction shown in Figure 3.6 is usedto illustrate the preservation of design through implementation. This �gureshows the portion of the hierarchy that designs a Grid Function which isan application �eld such as pressure or temperature de�ned on the compu-tational Grid Hierarchy. The �rst application of the principle of separationof concerns separates the structure of the grid hierarchy from the storageassociated with the �eld. The structure of the grid hierarchy is then de-�ned as the combination of the hierarchy index space (which is derivedfrom the application domain using space-�lling mappings) and the GridGeometry operators such as regions (bounding boxes) and points (coordi-nates). The storage is implemented as an HDDA which is separated intothe hierarchical index space and extendible hashing bucket storage.The actual C++ class hierarchy corresponding to this abstraction hi-erarchy is shown in Figure 3.7. The classes that make up the base of thehierarchy include:� A Buckets class structure that implements generic data bucketsand bucket iterators. Buckets are specialized into single (or standalone) buckets and packed buckets which combine multiple singlebuckets.� An Index-Space class structure which implements the hierarchicalextendible, index space based on space-�lling mappings. The classstructure starts with a simple bit vector of arbitrary length (classBitVec) and specializes this class into a space-�lling index (classsfcIndex) by applying bit interleaving to it. Classes PeanoHilbertandMorton apply bit transformation de�ned by the Peano-Hilbertand Morton space-�lling mapping algorithms respectively to thesfcIndex to generate the appropriate index-space.� A Grid Geometry class structure which implements points and re-

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 13gions in the computational domain. Class Coords implements anarbitrary point in the domain while class BBox implements a re-gion as a combination of a lower bound Coords and an upper boundCoords.Storage for the Grid Function is built on the HDDA structure whichis implemented as a composition of the index-space and bucket class struc-tures. HDDA objects are then specialized via inheritance to implementGridData objects by adding grid access semantics. The Grid Structure isimplemented as the GridHierarchy class which specializes individual Grid-Components. The GridComponent class implements a single componentgrid in the grid hierarchy as a span(s) of the index-space which geometryoperators de�ned on it. GridHierarchy combines multiple component gridsinto the hierarchical SAMR grid structure and de�nes operators on thisstructure. Finally, storage (GridData) and structure (GridHierarchy) arecombined by the GridFunction class to implement application grid func-tions. It can be seen from Figures 3.6 and 3.7 that design structure derivedusing our design model based on separation of concerns and hierarchical ab-stractions directly complements its implementation class hierarchy, therebypreserving all the attributes of the design in the implementation.4. Applications of HDDA/DAGH. Figure 4.1 illustrates the spec-trum of application codes and infrastructures enabled by HDDA/DAGH.Three di�erent infrastructures targeting computational grand challengesuse HDDA/DAGH as their foundation: (1) a computational infrastructurefor the binary black-hole grand challenge, (2) a computational infrastruc-ture for the neutron star grand challenge and (3) IPARS: a problem solv-ing environment for parallel oil reservoir simulation. Applications codesdeveloped using the HDDA/DAGH data-structures and programming ab-stractions includes general relativity codes for black-hole, boson star andneutron star interactions, coupled hydrodynamics and general-relativitycodes, laser plasma codes, and geophysics codes for adaptive modeling ofthe whole earth. HDDA/DAGH is also used to design a multi-resolutiondata-base for storing, accessing and operating on satellite information atdi�erent levels of detail. Finally, base HDDA objects have been extendedwith visualization, analysis and interaction capabilities. The capabilitiesare then inherited by application objects derived from HDDA objects andprovide support for a framework for interactive visualization and compu-tational steering where visualization, analysis and interaction is directlydriven from the actual computational objects.5. Related Work. The authors are not aware of any closely relatedwork. There are hundreds if not thousands of substantial and e�ectiveprograms which successfully implement \high performance computations".But there are relatively few infrastructures for support of implementationof high performance parallel computations. Of course, the designers anddevelopers of other packages [10,11,12] for support of implementation of

www.manaraa.com

14 MANISH PARASHAR AND JAMES C. BROWNEadaptive mesh re�nement methods have all had to face and overcome theissues and concerns of designing to performance and designing for exten-sibility. But for the most part the process of design for these systems haslargely gone unrecorded. If HPC is to be an e�ective discipline we mustdocument good practice so that best practice can be identi�ed. The mostclosely related body of research is that of \Software Architectures" [13].Our design models are closely related to software architectures. But littleattention has been paid to \software architectures" for high performancecomputing. Smith and Browne [14] and Smith [15] have de�ned a disciplineof performance engineering for information management software systems.There are thousands of books and papers on conventional software engi-neering. Fundamental concepts such as hierarchical structuring and orderlyprocess are well covered in the standard books ([1,2] among others). Butthe particular concerns of HPC software systems are not covered.6. Conclusions. It has been shown that at least for the HDDA/DAGHPDI that following a development model and process which targets the is-sues important for software systems for high performance software systemscontributed to attainment of a system which has been demonstrated tomeet its requirements and to have desirable properties with respect to ex-tensibility and portability. We suggest that formulation and applicationof appropriate development models and reporting on the results of use ofgood development models will bene�t the community concerned with de-velopment of high performance software systems.7. Acknowledgments. There are many contributors to the develop-ment of HDDA/DAGH. Carter Edwards was an major contributor to theconcepts of the HDDA. The authors are grateful the community of userswho endured the painful process of developing the requirements and us-ing early versions of admittedly incomplete versions of HDDA/DAGH. Inparticular we are grateful to Richard Matzner, Matt Choptuik, Ed Sei-del, Paul Walker, Joan Masso, Greg Cook, Tom Haupt, and Geo�rey Fox.Financial support has come from NSF ACS/PHY grant 9318152 (ARPAsupplemented) and from DARPA/CSTO contract 3531427 through a sub-contract from Syracuse University and from Argonne National Laboratorythrough the Enrico Fermi Fellowship to Manish Parashar.REFERENCES[1] Ian Sommerville, Software Engineering, Addison Wesley, 1996.[2] Roger Pressman, Software Engineering: A Practitioner,s Approach, MacGraw-Hill, NY, NY, 1987.[3] E. W. Dijkstra, \The Structure of the THE Operating System", CACM, pp.341{346, Nov. 1968.[4] James C. Browne, \A Language for Speci�cation and Programming of Recon-�gurable Parallel Computation Structures", Proceedings of the InternationConference on Parallel Processing, Bellaire, MI, Aug. 1982.

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 15[5] Raju Pande and James C. Browne, \A Compositional Approach to ConcurrentObject-OrientedProgramming",Proceedings of the InternationConference onCompilers and Languages, Paris, France, May 1994.[6] Carter Edwards and James C. Browne, \Scalable Distributed Dynamic Arrayand its Application to a Parallel hp-Adaptive Finite Element Code", Presen-tation at Parallel Objec-OrientedMethods and ApplicationsWorkshop, SantaFe, NM, Feb. 1996.[7] Marsha J. Berger and Joseph Oliger, \Adaptive Mesh Re�nement for Hyper-bolic Partial Di�erential Equations", Jounal of Computational Physics, pp.484{512, 1984.[8] Hans Sagan, Space-Filling Curves, Springer-Verlag, 1994.[9] R. Fagin, \Extendible Hashing - A Fast Access Mechanism for Dynamic Files",ACM TODS, 4:315{344, 1979.[10] Scott B. Baden, Scott R. Kohn, Silvia M. Figueria, and Stephen J. Fink,\The LPARX User's Guide v1.0", Technical report, Department of ComputerScience and Engineering, University of California, San Diego, La Jolla, CA92093-0114 USA, Apr. 1994.[11] S. J. Fink, S. R. Kohn, and S. B. Baden, \Flexible Communication Mecha-nisms for Dynamic Structured Applications", Proceedings of IRREGULAR'96, Santa Barbara, CA, Aug. 1996.[12] Rebecca Parsons, \A++/P++ Array Classes for Architecture Independent Fi-nite Di�erence Computations",OON-SKI'94 - The Object-Oriented NumericsConference, Sunriver, Oregon, pp. 408{418, Apr. 1994.[13] Mary Shaw and David Garlan, Software Architecture: Perspectives on anEmerging Discipline, Prentice-Hall, Englewood Cli�s, NJ, 1996.[14] C. Smith and James C. Browne, \The Structure of the THE Operating System",Proceedings of NCC'82, AFIPS Press, NY, NY, pp. 217{224, 1982.[15] C.U. Smith, PerformanceEngineering of Software Systems, AddisonWesley, 1990.

www.manaraa.com

16 MANISH PARASHAR AND JAMES C. BROWNE
 ��

Fig. 3.1. HDDA/DAGH Abstraction Hierarchy

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 17
 ��

Fig. 3.2. Hierarchical Abstractions of the HDDA

www.manaraa.com

18 MANISH PARASHAR AND JAMES C. BROWNE

Fig. 3.3. Hierarchical Space-Filling Mappings

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 19
 ��

Fig. 3.4. Extendible hashing for distributed dynamic storage and access

www.manaraa.com

20 MANISH PARASHAR AND JAMES C. BROWNE
 ��

Fig. 3.5. HDDA/DAGH distributed dynamic storage

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 21
 ��

Fig. 3.6. Preserving Design in Implementation: Hierarchical Abstraction

www.manaraa.com

22 MANISH PARASHAR AND JAMES C. BROWNE
 ��

Fig. 3.7. Preserving Design in Implementation: Object Oriented Implementation Hier-archy

www.manaraa.com

SYSTEMS ENGINEERING FOR HPC SOFTWARE 23
Geophysical Modeling
IG. UT, Austin

Multiresolution Database
EOS Project
CS, CSR, UT Austin

Data-Management Infrastructure

II. High-Level Programming Abstractions
I. Distributed Dynamic Data-Strucutres

Neutron Star Coalescence

& Experimentation
CS, UT Austin

Max Planck Institute

Max Planck Institute

Boson Star Evolution
CR, UT Austin

Interactive Visualization

MCS, ANL
NCSA, UIUC
Washington University

Max Planck Institute
NCSA, UIUC

GR + Hydrodynamics

Composite Materials
Analysis
TICAM, UT Austin Resevoir Simulation

Laser-Plasma Interaction

Black-Hole Evolution
NCSA, UIUC
CR, UT Austin
Cornell University

Physics, UT Austin

CSM/PE, UT AustinFig. 4.1. HDDA/Applications

